RESEARCH NOTE

Nitric Oxide-Promoted Partial Oxidation of Methane under Strongly Oxidising Conditions

Paolo Fornasiero, Jan Kašpar,¹ Sabina Fagotto, and Mauro Graziani

Dipartimento di Scienze Chimiche, via Giorgieri 1, Università di Trieste, 34127 Trieste, Italy

Received July 21, 1999; revised September 9, 1999; accepted September 15, 1999

Addition of catalytic amounts of NO to methane-containing mixtures under oxidising conditions selectively promotes partial oxidation reactions at expense of the total combustion, the effects being more pronounced in the ZrO_2 and Al_2O_3 catalysts compared to those in CeO_2-containing ones because of the high-combustion activity of CeO_2. $_{\odot}$ 2000 Academic Press

INTRODUCTION

Conversion of methane and other paraffins to more useful products is a research area of strong interest. For example, the catalytic partial oxidation of methane to syngas, which is expected to afford a ratio of H₂/CO of about 2, makes methanol synthesis an ideal follow-up process. Similarly, the dehydrogenation of paraffins in the presence of oxygen (oxydehydrogenation) may be a cheap source of olefins and provide valuable feedstock for many industrial processes (1). Generally speaking, in all the selective catalytic oxidation reactions, oxygen-deficient reaction mixtures must be employed to minimise the production of CO_2 , which is a by-product of the undesirable nonselective oxidation. Typically in the CH_4 conversion to syngas, e.g., partial oxidation according to

$$CH_4 + \frac{1}{2}O_2 \rightarrow CO + 2H_2,$$

the ratio $O_2/CH_4 \le 0.5$ is employed. Under these conditions catalyst poisoning easily occurs due to carbon deposition (2). Schmidt and co-workers reported in a series of papers that high selectivity to CO (>90%) at O_2/CH_4 ratios close to 0.5, which are of practical interest, can be obtained over NM monoliths operating at very short contact times (3, 4). However, very high temperatures, typically above 1000°C, have to be maintained to avoid carbon formation since equi-

librium dictates the presence of significant carbon fraction below that temperature (5). Fluorite-type metal oxide catalysts containing CeO_2 and ZrO_2 has recently received considerable interest as oxidation catalysts due to their high efficiency as total oxidation catalysts (6, 7).

In the present note the effects of NO addition on the selectivity of the combustion reactions catalysed by CeO_2 and ZrO_2 -containing oxides is reported. It is observed that the addition of catalytic amounts of NO favours a high selectivity toward partial oxidation, even under strongly oxidising conditions. This adds interest to these findings since co-activation of hydrocarbons and NO at the support was indicated as the reaction pathway for the removal of NO_x under lean conditions (strongly oxidising) from simulated auto exhausts, using saturated hydrocarbons as the reductants (8).

EXPERIMENTAL

ZrO₂ and mixed CeO₂-ZrO₂ oxides were synthesised as previously reported (9). All the catalysts were characterised by powder XRD measurements (Rietveld refinement), Raman spectroscopy, and surface area (BET) measurements. Single-phase mixed oxides were obtained with the following phase attribution (10): CeO₂, Ce_{0.8}Zr_{0.2}O₂ cubic, and Ce_{0.2}Zr_{0.8}O₂ tetragonal (t). ZrO₂ consisted of a mixture of m (monoclinic, 24%) and t (76%) after calcination at 900°C. Catalytic experiments were carried out in a continuous flow reactor; 30-85 mg of catalysts were employed, using a gas mixture feeding rate of 40 ml min $^{-1}$. Typically, the following conditions were employed: time factor, W/F, 2.12×10^{-3} g min ml⁻¹; CH₄ concentration, 0.2%; $O_2/CH_4 = 5-15$; total pressure, 1 atm. Light-off curves were measured in run-up/run-down experiments using a heating/cooling rate of 1° C min⁻¹. Catalysts were tested in powdered form and were pretreated in a flow of O₂ in He at 600°C for 5 h. Analyses of feed and products were carried out by on-line gas chromatography and mass spectrometry. In the mass spectra, cracking patterns were accounted for.

 $^{^1}$ Corresponding author. Fax: +39-040-6763903. E-mail: kaspar@univ.trieste.it.

TABLE 1

Catalytic Activity and CO Selectivity in the Partial Oxidation of Methane for the Investigated Catalysts

Feeding mixture			Temperature	CO selectivity	CH ₄ conversion at	Temperature of	т.,, <i>b</i>
O ₂ /CH ₄	NO (%)	Catalyst	formation (°C)	(%)	(%)	(°C)	∩ 50% (°C)
5	1	CeO ₂		Traces			750
5	0.06	CeO_2	610-830	19	87	700	650
5	/	Ce _{0.8} Zr _{0.2} O ₂		Traces			700
5	0.06	Ce _{0.8} Zr _{0.2} O ₂	620-730	21	65	660	640
5	/	Ce _{0.2} Zr _{0.8} O ₂	630-900	<3	81	900	840
5	0.06	Ce _{0.2} Zr _{0.8} O ₂	630-850	22	97	780	720
5	/	ZrO_2	760-900	18	33	900	
5	0.06	ZrO_2	610-900	59	85	730	690
5	0.8	ZrO_2	650-900	27	86	790	750
15	_	ZrO_2	730-860	61	93	850	840
15	0.006	ZrO_2	610-760	51	84	675	650
15	0.06	ZrO_2	600-810	58	94	650	630
15	0.8	ZrO_2	620-900	64	85	730	700
5	/	Al_2O_3	650-880	23	40	825	832
5	0.06	Al_2O_3	580-830	50	85	665	635

Note. Time factor, W/F, 2.12×10^{-3} g min ml⁻¹ (5.25×10^{-4} g min ml⁻¹ for CeO₂ and Al₂O₃); CH₄ concentration, 0.2%; range of temperatures, 200–900°C.

^{*a*}CO selectivity: mol CO \cdot (mol CO + mol CO₂ + mol CH₄)⁻¹.

^bTemperature of 50% CH₄ conversion.

RESULTS AND DISCUSSION

 $T_{50\%}$ temperatures (defined as temperature of 50% CH₄ conversion) and selectivity in CO production in the oxidation of methane measured over the CeO₂–ZrO₂ mixed oxides, ZrO₂, and CeO₂ are reported in Table 1. Figure 1 reports typical results shown here for ZrO₂. Methane combustion is effectively catalysed by all the catalysts employed, except ZrO₂, which shows rather poor activity. The $T_{50\%}$ is higher than 900°C in the latter catalyst. Partial oxidation to yield CO is highest over pure ZrO₂, which is consistent with its scarce ability to act as a combustion catalyst. Noticeably, even relatively small amounts of CeO₂ inserted

into the ZrO_2 lattice strongly promoted the total combustion of CH₄. This is in agreement with the high-combustion efficiency of this oxide. The effects of addition of catalytic amounts of nitric oxide to the feed are remarkable (Fig. 1). There is a strong enhancement of the catalytic activity and the $T_{50\%}$ decrease by 60–120°C (Table 1). The effect is particularly high in the case of ZrO₂, where the addition of 600 ppm of NO decreases the temperature for 30% CH₄ conversion by 250°C. Most importantly, the nonselective combustion appears partially inhibited in all the catalysts: for example, over ZrO₂ a yield calculated on a carbon basis of 59% of CO is observed at a CH₄ conversion that

FIG. 1. CH_4 ($\bigcirc \bullet$) conversion and CO selectivity ($\square \blacksquare$) vs reaction temperature over ZrO_2 (open symbols): (a) effect of nitric oxide addition (filled symbols) (0.06%) to the $O_2/CH_4 = 5$ mixture; (b) effect of using NO_2 as the oxidant, $NO_2/CH_4 = 10$. Reaction conditions as reported in Table 1.

significant amounts of CO are produced under oxidising conditions, even on pure CeO₂ which is a total combustion catalyst (6). No deactivation of the catalysts was observed after 10 h under reaction conditions. Selectivity in CO formation up to 95% was observed at low conversions (<5%). Changes of the O₂/CH₄ ratio and amount of NO added were also investigated. No significant decrease of CO production is observed by increasing the O_2/CH_4 up to 15. To our knowledge, this is the highest CO selectivity in the partial combustion of CH₄ under such strongly oxidising conditions. An increase of NO concentration from 600 ppm to 0.8% at $O_2/CH_4 = 5$ results in an increase of the light-off temperature and lower CO selectivity. This suggests that at high NO concentration there is some competition of NO on the active sites. Accordingly, ZrO₂ shows negligible activity at the temperatures investigated for the direct NO/CH₄ reaction.

To check the extension of the present observation, δ -Al₂O₃ (BET surface area, 90 m² g⁻¹) has also been tested in the CH₄ combustion (Table 1). A poor oxidation activity is observed in the absence of NO. In contrast, the addition of ppm of NO strongly favours the activity of the catalyst.

To investigate the nature of this promotional effect, runup experiments were carried out, monitoring the reaction products via mass spectrometry using Ce_{0.2}Zr_{0.8}O₂ as the catalyst (Figure 2). Negligible variations of the intensity of the NO signal are observed over the whole range of temperature, while O₂ is being consumed in correspondence of CH₄ consumption, indicating that the latter species acts as an oxidant. In agreement, a $T_{50\%} > 900^{\circ}$ C was measured in a separate experiment using the NO/CH₄ mixture over the same catalyst. Remarkably, as the CO production starts, both H₂ and traces of NO₂ are formed. It is known that hydrocarbon oxidation is accelerated by the presence of NO₂ (11).

However, no NO₂ has been detected by carrying out a corresponding experiment with no CH₄ present. Consistently, at 650°C, where NO₂ formation starts, a maximum concentration of 0.4 ppm of NO₂ is calculated at equilibrium for a mixture containing 600 ppm of NO and 1% of O₂, which further decreases with temperature. This suggests that NO₂ is formed from a NO, O₂, and CH₄ mixture by co-reacting at the catalytic centre. NO₂, whose formation in catalytic amounts is assisted by the hydrocarbon (12), could therefore either act as a selective oxidant or assist the selective oxidation of CH₄ to CO, as previously suggested for the NO/O_2 /propane reaction (8). The effectiveness of NO_2 to promote the selective oxidation of methane was tested under equivalent conditions, e.g., at the same excess of oxygen (Fig. 1b). The catalytic activity of ZrO₂ is by far higher when NO₂ is used as an oxidant instead of O₂ and good selectivity in CO is obtained, confirming that NO_2 may play a role as a selective oxidant. Notice, however, that under our reaction conditions NO₂ is catalytically formed/consumed since a ratio of $CO/NO_2 \approx 300$ can be estimated from data re-

FIG. 2. Selected ion monitoring of CO, CO₂, NO₂, H₂, and H₂O formation and CH₄, O₂, and NO consumption as a function of reaction temperature. Catalyst, Ce_{0.2}Zr_{0.8}O₂; reaction conditions as reported in Table 1; heating rate, 10° C min⁻¹. Reactant mixture: 0.2% CH₄, 1% O₂, and 0.06% NO in He.

ported in Fig. 2. It should also be noted that the system NO (ppm level)/ O_2 is more effective in producing CO. As shown in Table 1, the promoting effects are indeed observed at a NO concentration as low as 60 ppm. The specificity of NO to react at the catalytic centre seems remarkable since a ratio of $O_2/NO = 500$ was employed in this experiment.

Formation of CO via steam or CO_2 reforming is unlikely in view of the very low CO production on CeO_2 – ZrO_2 , in the absence of NO. In addition, as the water production increases, CO formation drops. At this point a contribution to the formation of CO via a reverse water–gas shift reaction (r-WGSR) cannot be excluded. In fact, a separate experiment showed that this reaction is catalysed by ZrO_2 above 500°C. It should be noted, however, that even if some CO was formed via r-WGSR, the source of hydrogen, which is necessary for this reaction, would be a partial oxidation reaction.

The effect of NO addition in the oxidation of propane was preliminarily examined over ZrO_2 . Also in this case the activity was improved and low conversion to CO_2 was observed, CO, CH₄, and other low molecular weight hydrocarbons being the main products of the reaction. In conclusion, the present work disclosed that the selectivity of methane combustion over ZrO_2 -, Al_2O_3 -, and CeO_2 -based oxide catalysts can be strongly modified by the addition of catalytic amounts of nitric oxide to the feed, remarkably increasing the CO formation, even under a large excess of oxygen.

ACKNOWLEDGMENTS

University of Trieste, the Ministero dell'Ambiente (Roma), Contract DG 164/SCOC/97, CNR (Roma) Programmi Finalizzati "Materiali Speciali per Tecnologie Avanzate II," Contract 97.00896.34, and MURST (Roma) "Progetti di Ricerca di Rilevante Interesse Nazionale—1998" are gratefully acknowledged for financial support.

REFERENCES

1. Albonetti, S., Cavani, F., and Trifiro, F., *Catal. Rev.-Sci. Eng.* **38**, 413 (1996).

- Tsipouriari, V. A., Zhang, Z., and Verykios, X. E., J. Catal. 179, 283 (1998).
- 3. Hickman, D. A., and Schmidt, L. D., *Science* **259**, 343 (1993).
- 4. Witt, P. M., and Schmidt, L. D., J. Catal. 163, 465 (1996).
- 5. Hickman, D. A., and Schmidt, L. D., *J. Catal.* **138**, 267 (1992).
- 6. Zamar, F., Trovarelli, A., de Leitenburg, C., and Dolcetti, G., *J. Chem. Soc., Chem. Commun.* 965 (1995).
- Choudhary, V. R., Uphade, B. S., Pataskar, S. G., and Keshavaraja, A., Angew. Chem., Int. Ed. Engl. 35, 2393 (1996).
- 8. Burch, R., and Watling, T. C., J. Catal. 169, 45 (1997).
- Vidmar, P., Fornasiero, P., Kaspar, J., Gubitosa, G., and Graziani, M., J. Catal. 171, 160 (1997).
- Yashima, M., Arashi, H., Kakihana, M., and Yoshimura, M., J. Am. Ceram. Soc. 77, 1067 (1994).
- 11. Ueda, A., Ejima, K., Azuma, M., and Kobayashi, T., *Catal. Lett.* **53**, 73 (1998).
- 12. Meunier, F. C., Breen, J. P., and Ross, J. R. H., *Chem. Commun.* 259 (1999).